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We consider an Ising system in two dimensions with a two body ferromagnetic
interaction Jy(x, y) that depends on the Kac scaling parameter y. We prove that
the inverse critical temperature /cr(y) is strictly above the mean-field value
(equal to 1), namely that there exists C>0 so that for any b< C, /cr(y)>
1 + by2 log y -1 for all y sufficiently small. The temperature shift Cy2 log y -1 is to
leading orders equal to the covariance of the magnetization fluctuations.

KEY WORDS: Kac potentials; critical temperature; fluctuations; Euclidean
field theory.

1. INTRODUCTION

The phase diagram of the nearest neighbor Ising system is quite explicitly
known, meanwhile we have only qualitative information on its structure
when the interaction involves more sites. Paradoxically the problem is
again "simple" if the range of the interaction is long. To give a quantitative
meaning to this notion we follow Kac and introduce a fixed function J(r),
r e Rd, that we suppose smooth, spherically symmetric, supported by the
ball of radius 1 and normalized to have total mass 1. We also suppose
y(r)^0, thus restricting to ferromagnetic interactions. We then define the
spin-spin coupling strength between the spins at x and y, x = y in Zd, as
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where cy is a normalization coefficient that goes to 1 as y -»• 0 +:

Thus the formal hamiltonian of a spin configuration a= { a ( x ) , x e Z d } ,
o(x)= +1, is

We can now give a precise mathematical meaning to a statement about a
property holding if the interaction range is long, meaning that there is
y* >0 so that for all y^y* that property holds for the hamiltonian (1.3).
The question we are interested in is the presence or absence of phase transi-
tions when y is small but positive, i.e., long but finite range interactions.
We know since the works of Kac, Uhlenbeck and Hemmer,(7) and specifi-
cally of Lebowitz and Penrose,(8) that the phase diagram of (1.3) in the
limit y -> 0 + converges to the mean field phase diagram which has a very
simple structure: two phases (the plus and the minus phase) when B > 1
and one phase (with 0 magnetization) when B< 1. The mean field inverse
critical temperature Bmf is thus equal to 1.

This beautiful convergence result unfortunately does not answer our
question. In fact the diagram of the free energies (versus the magnetization,
after the thermodynamical limit, at y > 0 and fixed temperature) might very
well converge as y ->• 0+ to the mean field diagram, which at B > 1 has a
flat part corresponding to phase coexistence, without having, before the
limit, any flat part or maybe flat portions elsewhere than in the limit. The
mere convergence of the free energies does not allow to conclude that if
there is phase transition after the limit then there is phase transition when
y is non zero, a statement clearly false in d = 1 dimensions.

The region {B < 1} however has a unique phase also when y > 0.
Miracolously in fact the Dobrushin uniqueness condition

coincides with the mean field condition B<Bmf, even though (1.4) involves
only the energy and not the other thermodynamic potentials (like the
entropy) that enter in the determination of the critical temperature. Indeed
this coincidence (between the Dobrushin condition and the mean field criti-
cal temperature) fails if we extend our considerations to systems where the
spins have more general values, hence with different entropy functions.
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The region {B>1} is studied in ref. 4 where it is proved that in d^ 2
for any B > 1 there is yB > 0 such that for all y < yB there are at least two
Gibbs states. From the above considerations we can then conclude that the
true inverse critical temperature B c r ( y ) is not smaller than 1 and converges
to 1 as y -> 0 +.

It thus only remains to investigate the phase diagram in an
infinitesimal (as y->0 + ) neighborhood of B=l and to locate more
accurately the position of the inverse critical temperature inside this
neighborhood. This has been partially done in ref. 2 for an Ising system in
d =3, showing that B c r ( y ) ^ \ + 0 ( y 2 ) (where, following the original
proposal of Kac, the interaction is chosen in such a way that it may be
transformed into a nearest neighbor system for which reflection positivity
applies). In this paper we consider d=2 , a general interaction as in (1.3)
and work on the other side of the inequality proving, as announced in
ref. 3, that the true inverse critical temperature is strictly above 1:

Theorem 1.1. For any b<C,

there is y(b)>0 so that for all 0<y^y(b), Bcr(y)^1 + by2 log y-1.
We prove Theorem 1.1 via a perturbative analysis of the hierarchy of

equations for the correlation functions which gives a very detailed under-
standing of the structure of the system up to B w 1. In particular we have
a simple interpretation of the temperature shift found in Theorem 1.1 in
terms of the magnetization density fluctuations. The term Cy2 log y-1 is in
fact to leading orders the covariance Cy of the magnetization fluctuations.
Their magnitude goes like y2 when B < 1, the extra divergent factor log y -1

appears when B approaches 1 and plays a leading role in the temperature
shift, as explained in the following heuristic argument. The original mean
field equation is

which expanded around m = 0 (B is fixed in a small neighborhood of 1)
gives

Rm the remainder term. In (1.7) m3 is an approximation for the expectation
of the cube of the empirical magnetization S of a suitable block of spins.
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Writing S = m+Y, with Y the fluctuation field around the average
magnetization m, we have < S 3 > = m3 + 3m< Y2>, supposing that the other
terms (odd in Y) vanish by symmetry (or that they can be neglected). As
we are interested in the transition through m = 0 we may certainly suppose
that m2< < Y 2 > , hence the leading contribution to < S 3 > is 3mCy, Cy =
< Y2> (the anomalously large fluctuations, i.e., the presence of the factor
log y - l , is used to make the argument rigorous). Taking this into account
we arrive to a new mean field equation:

with R'm a new remainder term. By ferromagnetic inequalities the
covariance Cy is an increasing function of B and its value at B= 1 — y2 (i.e.
still in the one phase region) can be "easily" estimated as

which together with (1.8) yields a lower bound on the inverse critical tem-
perature which is just the same as that proved in Theorem 1.1. The
logarithmic divergence in (1.9) is typical of d=2, in d=1 there is no
divergence and the whole argument fails.

We actually find in the course of the proofs that the covariance (of the
magnetization fluctuations) does not increase past its value at ft = 1 — y2

(to leading orders in y) till B < 1 + Cy2 log y-1. Supposing that this remains
true also for slightly larger values of B, according to the previous heuristic
arguments we would then conclude that the magnetization should become
positive when B = 1 + C'y2 log y -1 with any C' > C and y correspondingly
small. This would show that l + Cy2 log y-1 is the inverse critical tem-
perature on the scale y 2 l o g y - 1 , as y->0 + . Unfortunately our approach
does not give indications on the validity of this conjecture which therefore
remains a totally open problem.

While in this paper we have focused our attention on the shift of the
critical temperature caused by the magnetic fluctuations, in a forthcoming
paper we reverse this viewpoint centering our analysis on the fluctuation
field itself proving its convergence to a o4 Euclidean field theory as y -> 0 +

and with fix 1 + Cy2 log y-1. The origin of the Wick regularization in the
limit theory is then explained in terms of the critical temperature shift
found in Theorem 1.1, which is in fact recognized as the microscopic origin
of the Wick regularization.

Our results are obtained starting from the DLR equations and deriving
a system of coupled equations for the correlation functions that expresses
a given n-points correlation function in terms of all the others. By a trunca-
tion procedure we get a hierarchical structure that allows to describe a
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given n-points correlation function in terms of k-points correlations with
k < n + 2 plus a negligible error. By suitably rearranging the terms (i.e. by
writing them via the truncated correlation functions) we get equations that
can be solved iteratively with an error that for p < 1 is controllable and the
iteration procedure converges. The hard part is to extend the analysis
beyond p = 1. We achieve this by making an ansatz on bounds on the
correlation functions and then proving that the ansatz is consistent with
the above mentioned equations. To conclude we need to show that the
actual correlation functions satisfy the ansatz and this is done by a con-
tinuity argument starting from ft < 1. In this part we use the Newman's
Gaussian inequalities and the convexity properties of the pressure to prove
uniqueness of the even correlation functions to extend the bounds proved
for the Gibbs measure with periodic conditions to the Gibbs measure with
plus boundary conditions.

In Section 2 we apply these considerations to the even correlation
functions and in Section 3 to the odd ones, in particular to the magnetiza-
tion itself, thus proving Theorem 1.1. In an Appendix we study the central
limit theorem for the iterates of the transition probability Jy(x, y), deriving
estimates that are uniform in y.

2. BOUNDS ON THE EVEN CORRELATION FUNCTIONS

We consider an auxiliary spin-spin interaction. Let £ be the collection
of all y = {V0.x,x e Z2\0} in [0, I]z2\° For y e l and y = x in Z2, we set
Ax,y = A0, y_x, and

In the sequel A will always denote a torus in Z2 (centered at 0) and for
y =£ x in A we write

where the sum is over all z e Z2 such that z = y modulo A.
The expectation of the Gibbs measure with interaction (2.1)-(2.2) in

the torus A (i.e. in the cube A with periodic boundary conditions) at the
inverse temperature ft is denoted by <•>/?, y. A, /i °r simply < • > when the
values of the parameters are clear from the context.

We shorthand for y > 0 and r e R2
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namely SY(r) ~ log y-1 for r small whereas it reaches for r ~ y-2 a plateau
with value 1/2. For b e R we set

and consider hereafter only b < C (C as in Theorem 1.1).

Definition 2.1. p is (K, y)-good, y > 0, K > 0, relative to AeJz? and
to a torus A if for any x = 0 in A

P is (K, y)-good if it is (K, y)-good for any A and any torus A whose side
is not smaller than y-2.

By ferromagnetic inequalities if p is (K, y)-good relative to A and A,
any p' < p is also (K, y)-good relative to A and A. The main technical result
of this Section is:

Proposition 2.2. For any b < C and E > 0 there is yh_,. > 0 so that
if V^7b,,: and ftb,7 is (100C, >>)-good relative to A and to a torus A of side
not smaller than y~2, then /?,, )p is ((1 + £) C, y)-good relative to A and to A

We postpone both the proof of Proposition 2.2 and the simple proof
(see Lemma 2.6 below) that there is y0 > 0 so that ft = 1/2 is (C, y)-good for
any y < y0. Then, by the continuity in p of the functions <a(0) a(x)>p, y, y, A
we obtain:

Corollary 2.3. Let b < C, e > 0 and y'h_r:=min(yh^,y0). Then for
any y^y'h.Jh.y^ ((1 +e) C, y)-good.

Denote by < • > / y , , _ + the expectation with respect to the + Gibbs
measure on the whole Z2 with the pure interaction /,,, i.e. with A = 0. We
will next prove:

Theorem 2.4. Let b, e and yj,,» be as in Corollary 2.3. Then for any
7 ^ y'b.,-. and any x ^ 0

Proo^. Let x^O, fix {AJ ,„ >»e/2\{0, x}} in [0, l]z2N<°--v> and let
A0 v vary in [0, 1 ]. Then the limit thermodynamic pressure P is a function
of the only variable AQ v> P = P(A0 v). By convexity there is AJ,.ve(0, 1)
where P(A0,.V) is differentiable. We call A*eJ5? the interaction completed
with A0 v = AJ v. By Theorem 7.3.2 in Ruelle,'10) if// and v are any two trans-
lationally invariant Gibbs measures with interaction determined by A*, then
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In particular this holds with v the + Gibbs measure and u any weak limit
point of Gibbs measures on A (with periodic boundary conditions). By
ferromagnetic inequalities the correlation functions in the + state do not
increase if we drop the interaction A*, thus

The remaining of this Section is devoted to the proof of Proposition 2.2.
We begin with a well known mean field bound on the two body correlation
functions whose proof is reported for the sake of completeness.

Lemma 2.5. For any p, y, X and A and any x = 0 in A

Proof. Dropping the subfixes p, y, A, A from the expectation and
denoting by Ea(0) = u, a = ± 1, the conditional expectation given a(0) = a, by
symmetry

Let Ea (•) be the conditional expectation given the value of the spin con-
figuration a ,1Vv in A\x. We have

(the last term is 0 by symmetry). Let 3. = J(«rA^., a'A\X) be a probability on
{ — 1, 1} Av x { — 1, 1}/Av such that its first marginal is the Gibbs measure
on A\x conditioned on a(0) = 1 while the second marginal is the uncondi-
tioned Gibbs measure on A\x. 3. is then called a joint representation of
these two measures. By an abuse of notation we also denote by £( •) the
expectation with respect to 2., we then have

By FKG it is possible to choose J so that

because u is the limit of measures that by assumption satisfy the last
inequality. Theorem 2.4 is proved.
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We then use the DLR equations to write

where

and h'Y(x) is defined with a'(y) instead of a(y). By (2.8)

Lemma 2.6. For any e > 0 there is ye > 0 so that p = 1/2 is (e, y)-
good for any y < ye.

Proof. Let < • > = < • >p, y, y, A with p = 1/2. By (2.7) and recalling (2.1)

with c a suitable constant. By iteration

Since Jf(0, x) = 0 if y \x\ > 1

Moreover recalling that for any n ^ 1 the sum over x of J"(Q, x) (J"y the «th
convolution of Jy) is equal to 1 and that the side of A is ^ y ~2, we have

(because 2. is a joint representation). By symmetry the last term drops and
we obtain (2.7). Lemma 2.5 is proved.
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with c' a suitable constant. Thus

The bound (2.7) will be used when ft < 1, for /? ̂  1 we will need a more
refined analysis. From bounds on the two point correlation functions we
gain bounds on correlations with any even number of points via the
Newman's Gaussian inequalities, that we recall after some new notation.

Notation 2.7. Ak, fc> 1, denotes the family of all the subsets Y in
A with k elements.

Jy,A(x, Y) is defined analogously. We will write Sk when A = /2.

Theorem 2.8 (Newman's Gaussian inequalities). For any /?, y, X,
A, any n > 1 and any Y < A2", setting <•> = <• >p, y, y, A,

where the sum is over all the partitions of the set Y into atoms Y1,..., Yn

of two elements each.
Theorem 2.8 is a particular case of the Newman's Gaussian inequalities

for general ferromagnetic interactions,19) which include the case of the odd
correlations in the infinite volume plus Gibbs state, see Theorem 3.3 below.

As remarked earlier Lemma 2.6 becomes useless when p increases
past 1. The analysis of the case p > 1 is based on a very accurate study of
the hierarchy of the correlation functions and it is at the heart of the proof
of Proposition 2.2. To simplify notation we fix p, y, A and A and write < • >
for the expectation of the Gibbs measures with such parameters. Recalling
(2.9) we use the DLR equations to write for any x = 0 in A

By a Taylor expansion of the hyperbolic tangent the right hand side can be
expressed in terms of a series of correlation functions. Using the assump-
tion that p is (K, y)-good and the Gaussian inequalities we will truncate the
expansion controlling the error in terms of two point correlations. It turns

with c" a suitable constant. Lemma 2.6 is proved.
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out that if the Taylor expansion is truncated after the four point correla-
tions, the contribution of the remainder can be neglected. This is shown in
the next Lemma where, after the truncation, we retain only the two and
four point correlations. Because of these latter the resulting equation is not
a closed equation for the two point correlations but the terms can be
rearranged in such a way that the four point correlations appear as trun-
cated correlation functions, a feature that will be crucial for the successive
analysis. We will comment further this point after the lemma. We need first
a few new notation:

(which depends also on p and A)

and, for Ye A4,

the sum being over the three partitions of Y into two atoms of two
elements each. (2.16) is the four point truncated correlation function. We
use below the shorthand notation

Lemma 2.9. There is c> 0 so that for any y > 0, any torus A of side
> y - 2 , any A of side any y e L, any p >2 which is (100C, y)-good relative to A and A
and any x e A\0

Proof. A Taylor-Lagrange expansion to fifth order of the hyperbolic
tangent in (2.13) gives
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The last bracket term takes into account the remainder term of the Taylor-
Lagrange expansion and the error due to changing I7 A into Jy in the other
terms. The latter is bounded by cy'°° if c is a suitable constant. The former
is obtained by using Cauchy-Schwartz and bounding by a constant the sup
norm of the fifth derivative of the hyperbolic tangent. The first row on the
right hand side of (2.19) refers to the first order terms of the expansion
distinguishing coincident and different points. The second order terms of the
expansion are absent, the third order terms are written in the second to fifth
row of (2.19), distinguishing the various cases of different and equal sites.

The first term after the equality and the first term in the fourth row
reconstruct (/? — #>,) J7(x, 0) with an error as in (2.18), because

In fact by (2.10) Jy(x, 0 )<c 'y 2 , c' a suitable constant, and the two point
correlations are bounded using the assumption that /? is (100C, y)-good.

By (2.16) the term in the second row can be written as
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The error term takes into account the cases when Yr\ {0, y] 1= 0 and it is
bounded analogously to that in (2.20). With (2.21) we have thus recovered
also the truncated correlation function of (2.18). The second term in the
first row of (2.19) and the term in the third row of (2.19) together with the
first term in the second row of (2.21) reconstruct the term with the two
point correlations in (2.18) with an error compatible with (2.18). This
comes from the constraint z ̂  y in the sum in (2.19). The error when drop-
ping such a constraint is bounded by y4 times lOOCy2 log y ' which comes
from the two point correlation. The error is thus compatible with (2.18).

The second term in the fourth row and the first two in the fifth row
are respectively bounded by

with c a suitable constant (having used again (2.10) and that /? is (100C, y)-
good).

Finally we expand the term with hy(x)l° into a sum of products of
spins getting

Two are the crucial features in (2.18): the factor /? — vr in front of the
two point correlation functions and that the four point correlations appear
as truncated correlation functions. We will prove in Proposition 2.10 that vy

is bounded from below proportionally to y2 logy"' and, Proposition 2.11,
that the four point truncated correlation functions are bounded from above
proportionally to y4 log logy"1. Observe that this bound is much smaller
than the a priori bound obtained from the two point correlations using
Gaussian inequalities, which in fact gives [y2logy~']2. This will allow to
neglect the term with the truncated correlation function and (2.18) will
then become a closed equation for the two point correlations that can and
will indeed be solved. The inverse temperature is replaced in this equation
by fl — vy which amounts to an effective reduction of the inverse temperature
by vy yielding in the end Proposition 2.2.

with c a suitable constant. The bound comes from distinguishing the num-
ber of points in the resulting correlation functions and recalling that Jy is
bounded proportionally to y2 and that the sum of JY(0,x) is equal to 1.
By the Gaussian inequalities and the assumption that ft is (100C, y)-good
we then prove that the last term in (2.19) is bounded proportionally to
[y 2 logy~ ' ] 5 . Lemma 2.9 is proved.



Upper Bounds on the Critical Temperature for Kac Potentials 549

Proposition 2.10. For any £>0 there is yr>0 so that for any
AeJS?, any y ^ye, any torus A of side >y~2, any p > 1 – y2(log y -1)100 and
any 0< \x\ ^ lOOy"1 (recall that C is defined in (1.5))

Proof. By ferromagnetic inequalities we may and will restrict to /? =
/?y := 1 — y2(log y "')'°° and in the course of the proof <•> = <• >/; ,, ^ A.

We start proving that there is c > 0 so that for all x + 0 in A

Proceeding as in the proof of Lemma 2.6, by (2.7) there is o 0 so that

As shown in Appendix A, /" A(x, Q)^cy2n ', (2.23) then follows directly
from (2.24).

To prove (2.22) we go back to (2.19). we bound the remainder term
(with hy(x)>0) as in the proof of Lemma 2.9, for the other correlations
appearing in the second to fourth row we use (2.23) and the Gaussian
inequalities. Recalling that Jr(0, x) ^ cy2 and that the sum over x is equal
to 1 we conclude that there is c>0 so that

Let

and p a positive integer. Then

In Theorem A. 1 of the Appendix A it is shown that for a suitable constant
c, if y |;c|s; 100,
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with Dy -> D as y -> 0+. Thus for any £ > 0 there is p so that for n p > pand
all y > 0 small enough,

On the other hand given s > 0 there is yt. so that for all y < y,. and n^Ny

In conclusion

Proposition 2.11. For any b< C there are yh>0 and c so that if
y ^ yh and /?/, y is (100C, y)-good relative to X e <£ and to a torus A of side
^y~2, then for any XeA4

Proof. We shorthand < • > for <•>/»,, y,*, A and write /? for ftb r Let
A'e/t4 and xe X. Using the DLR equations we have, analogously to (2.19),

where x"' = X\(xux' u^"), <cr(^\x}a>', a = Ay(^)3, AK{x)5, has the same
expression as <op(A'\x-) cr(x)> T if cr(x) is replaced by a (we use ? instead of T
to avoid confusions with the higher order truncated correlation functions).

By using the Gaussian inequalities, the assumption that ft is (100C, y)-
good and the properties of /,,, by an argument similar to that used in the
proof of Lemma 2.9 we conclude that there is c> 0 so that

the term c'y2 bounding the sum of cy2n 2. By the arbitrarity of e we then
obtain the bound (2.22). Proposition 2.10 is proved.
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Thus for a new suitable constant c

then iterating (2.32) 4Nr times we get

By Theorem A.I in Appendix A, there is c>0 so that

where DY, defined in (A.3), converges to D as y->0 + .
On the other hand denoting by { Yt, Y2} a partition of Y into 2 atoms

of 2 elements each and writing Yt = (y{ ,, y{ 2), Y2 = (y2, i, y-i, 2)

We fix out attention on a single term in (2.35) say y2dy(y\ — y-i)
y2 ^y(y^ — ̂ 4) an^ consider the sum over y4. We have

822/88/3-4-2
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Since the bracket term in (2.36) is a bounded function of y, the last term
in (2.36) is bounded by

We distinguish in the first sum in (2.36) the terms where |y4 — y3| <
y ~ 2 ( \ o g y ~ ] ) ~ 1 0 0 .  T h i s  s u m  i s  b o u n d e d  b y

When

On the other hand

so that we deduce that there is c>0 so that

Proof of Proposition 2.2. As usual we denote by < • > the expecta-
tion given /? = /?/,,,,, }', ̂  and A as in the text of the Proposition. We start
from (2.18). Let 2c:=(C— b). By Proposition 2.10, with s = c, there is
y*>0 so that for all y^y*

Then (ft — vy)" is infinitesimal for n^-y 2(logy ') *, a<l. On the other
hand by Proposition 2.11 y~2 |O(0) cr(F)>r| ^cy2 log log y~\ so that
n y - 2 \ ( a ( Q ) ( r ( Y ) y T \  i s  i n f i n i t e s i m a l  i f  « < y ~ 2 ( l o g  y " ' ) " a ,  f o r  a n y  < x > 0 .
We thus define

The same bound is obtained when summing over y2. The sum over j, and
y3 is equal to 1 due to the presence of Jy(xt, y^ and Jy(x3, j3). (2.30) then
follows from (2.40) and (2.33). Proposition 2.11 is proved.
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and iterate (2.18) Ny times. We have

having bounded the remaining two point correlation function by
lOOCy2 log y~l as, by assumption, /? = /?,,,, is (100C, y)-good. There is c>0
so that

hence there is a new constant c such that

By Theorem A.I in Appendix A

Since for all y>0 small enough (fl — vr) ^ 1, the left hand side of (2.45) is
bounded by

where r\=yx. Given y and r we call ny(r) the largest integer n such that

so that the exponential in (2.46) is bounded by n -1 for n < ny(r). We then
have for any r
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(the second sum being absent if ny(r) > Ny) and

Thus, going back to (2.14), for any C>C= \/(nD), there is y* > 0 so that
for all y ̂  y*

Proposition 2.2 is proved.

3. BOUNDS ON THE ODD CORRELATIONS

In this section we consider the plus Gibbs state on /2 with interaction
Jy (i.e. X = 0) at the inverse temperature (ih y with b < C. We simply denote
by <•> its expectation, write ft for ftby and m := <o-(x)>, xeZ.2. By
ferromagnetic inequalities the magnetization m is always non negative and
if m = 0 then there is only one Gibbs state, hence Theorem 1.1 will be
proved once we show that there is yh > 0 such that m = 0 if -y ̂  yb.

The heuristic argument in the introduction suggests to consider the
DLR identity

(hy(0) is defined as in (2.9) with A replaced by Z2) and to expand the right
hand side of (3.1) in powers of fthy(Q). An analogous procedure has been
already used several times so far and it has always been possible to trun-
cate the expansion with a negligible error. Using the Cauchy Schwartz
inequality we had bounds like cy", with n sufficiently large to make the
error negligible, see for instance the proof of Lemma 2.10. Here instead a
bound cy", no matter how large is n, would not be sufficient, as the error
must be compared to m (that appears on the left hand side of (3.1)) and
m may be arbitrarily small: we will eventually prove that m = 0! We can
thus only accept bounds proportional to m and a term is negligible if it is
proportional to m by a coefficient cy" with n suitably large. Therefore we
cannot afford to truncate the expansion and we will have to consider the
full series. As the power series of tanh( •) has a finite radius of convergence,
the DLR identity (3.1) is not the best suited for our strategy and our first
step will be to establish another elementary identity which replaces (3.1).
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Lemma 3.1. Let XeZ2 be a finite set containing 0, then

Proof. Denote by ECT , the conditional expectation given the con-
figuration crZ2XO on Z2\0. Then

with Z(<7/2\0) the partition function. Thus, recalling that OeX,

Since

Using the two previous identities we get (3.2). Lemma 3.1 is proved.

Using the Notation 2.7 and recalling that qy is defined in (2.14), we set

We will see afterwards that py is negative and this will play a crucial role
as it will cause an effective reduction of the inverse temperature, cf. the first
term on the right hand side of (3.5) below. We also define for Ye S3

where the sum is over the all the partitions of Y into two atoms, one of
which being a singleton. Analogously to Lemma 2.9 we have:

Lemma 3.2. There is a constant c>0 such that
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Proof. We set X={0} in (3.2) and expand cosh(y?//,,(0)) and
smh(/3hy(Q)) in power series:

Recalling that £ JY(x, y) = 1 and using that the plus Gibbs state is transla-
tionally invariant we have m = (/*,,(())>. Since Jr(0, y)2 ^ cy2Jy(0, y),

Setting Y:= { y { , y2} we have

Calling {•} the term in curly brackets,

with c>0 a suitable constant.
The right hand side reconstructs the bracket term on the right hand

side of (3.3) with an error cy2 compatible with (3.5). An analogous proce-
dure applied to </zy(0)3> gives pr, thus proving (3.5). Lemma 3.2 is
proved.

where the sum is over all the partitions of the set Y into atoms 7,,..., Yn +,
of two elements each except one consisting of a singleton.

We will prove that both the series in (3.5) and the term with the trun-
cated correlation function are small in comparison to the other terms. The
proof uses again the Gaussian inequalities proved by Newman:

Theorem 3.3. Let YeS2"+l, n > 1, then (recall that the expecta-
tion refers to the plus Gibbs state)
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Remarks. As each of the terms in the sum in (3.8) has a factor m,
< a( Y) > is bounded proportionally to m with a coefficient that is a product
of two point correlations. By the positivity of the correlation functions, the
bound (3.8) is a fortiori true if the sites in Y= { y t , y2,, + i} are not all distinct.

Using Lemma 3.3 we have:

Lemma 3.4. There is a constant c>0 such that

Proof. The terms with k even are non positive, we thus need to consider
only the terms <A>,(0)2" + '>. Let {/,,..., In +,} be a partition of {1,.., 2« + 1}
into atoms of two elements each, except one with a singleton. Then

where X/t = [x/, x}} if 7, = {/', j} and xt and Xj vary independently on the
whole Z2 one of the 7y however is a singleton. Consider the case where
7, = {/, j}. Then by Corollary 2.3 if C > C there is / > 0 and for y ̂  /

where, by (2.10), cy1 bounds the term with Xj = x,. The right hand side is
then bounded by c'yMogy"1.

Recalling that one of the elements of the partition has a singleton we
then get

We will next bound the term with the truncated correlation function:

Lemma 3.5. There is c>0 such that for all XeS3

The number of partitions {/,,...,/„_,.,} is (2n + l)!!. Lemma 3.4 is
proved,
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Proof, let X= (x, y, z) e S3, a a function of the configuration a and
let <er(x) a(y) a>' have the same expression as <<r(x) a(y) <r(z)>' when
CT(X) -> a.

Then, analogously to (2.31) but starting from (3.2),

Similarly to (3.9), we get

Let

rename X=(xl,x2, x3), call Y= ( y } , y2, y3)eS3, then iterating 3N? times
(3.13) we get

The argument is now similar to that in the proof of Proposition 2.11 after
(2.33). Like in (2.35) we have

Take now for instance the term with i= 1 which (3.15) is multiplied by
Jy'(*3, yj- We thus have
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Then by (2.41)

Proof of Theorem 1.1. Let b< C as in the text of Theorem 1.1 and
recall that we are shorthanding /? = /?A r Going back to (3.5) and using
Lemma 3.4 and 3.5 there is c>0 and y ( l ) > 0 so that for all y^y ' "

By (2.22) (and using the ferromagnetic inequalities to replace the expecta-
tion with one referring to the plus state) for any C' e (b, C) and C" > C
there is y(2)e(0, y ( I ) ] so that for all y^y'2 ' and all |*| =$ lOOy"1

the first inequality comes from Theorem 2.4. Then by (3.3) and (2.14)

the last term takes into account the fact that the sum of yy(0, Y) in (3.3)
is not 1. Choosing C' and C" sufficiently close to C, py^ — b'y2logy~[
with b' > b, thus recalling that ft = 1 + by2 log y'

which for y small enough implies m = 0. Theorem 1.1 is proved. |

APPENDIX

In this Appendix we prove a local central limit theorem for the iterates
of Jy(x, y). The proofs are classical, we have only checked the dependence
on y of the parameters obtaining the uniform bounds used in the text. For
future applications we work in Z'' with d arbitrary.

Theorem A.1. For any positive integer m there is c>0 so that for
all ye(0, 1], all n^\ and all xeZ'1

Lemma 3.5 is proved.
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where

The remaining of the appendix is devoted to the proof of Theorem A.I
which follows the classical proof of the local central limit theorem for the
sum of i.i.d. variables. In our case however the distribution depends on the
parameter y and we want estimates uniform in y as y -»0. Analogous
problem's have been considered in refs. 5 and 1.

Instead of (A.I) we will prove the equivalent bound with the last term
replaced by

Calling y <= Rd the torus | — n, ii\d we have for any positive integer «

where

We call q a multi-index, q = (#/,,..., #/,), (i\,..., //) <= {1,..., d}. Given x, y >0
and n we denote by (?,,..., //) the coordinate labels such that \x,\ ^y~' -Jn
and set q* = (qft,..., qf), qf=2m. After integrating by parts (A.5) we get

We split the integral in (A.7) into four regions:

where a <^ 1 <g b are independent of y and will be fixed later, we will thus
write
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where n(^n(x) is defined by the integral (A.7) extended to the z'th region in
(A.8).

The region \k\ ^y«~1 / 3

We will first prove that there are a positive integerp and c>0 so that

It is clear from the error term in (A.10) that in this region the relevant
variable is y ~' ,/n k.

To prove (A. 10) we start by a Taylor-Lagrange expansion to 4th
order of J(k):

Then

with c a suitable constant. In deriving (A. 12) we have used that
n(y~lk)4< 1 which follows from the condition y~ 'A :<«~ ' / 3 .

After differentiating q* times on k we get several terms, each with a
factor JY(k)"~1', p a positive integer. We then use (A. 12) and

where c is a suitable constant (that depends on p hence, ultimately on m).
Similarly we have for l^i^d
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hence

Analogously, if q ^ q* is a multi-index, \q\ > 2 and qct, is the smallest multi-
index ~^-q with even entries

with p a suitable integer and c a constant (dependent on m). Observe that
?OT/2^2.

We have now all the ingredients to prove (A.10). In fact the first term
in (A. 10) takes into account the contribution of the first terms on the r.h.s.
of (A.12), (A.13), (A.16) and (A.17). All the other terms have at least a fac-
tor n ~ ' , hence (A.10).

Recalling (A.9), we write the contribution TrJ.'J, to /"(O, x) due to the
integral over \k\ ^y«"1/3 as

There is a constant c"-21 so that

which is obtained from (A.21) by the change of variable k -> ^Jn y lk.
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The integrand in (A.20) after the differentiation is bounded by a poly-
nomial F(^/ny~lk). In (A.20) we then extend the integral to the whole
torus 9~ and write

The first term is then integrated by parts giving the main contribution to
J"(0, x), i.e. the Gaussian term Gr(x, n). The other term is exponentially
small:

In conclusion

The region yn 'l/3 < \k\ s£ ya

Let a>0 be small enough, -I as in (A.24). Then from (A. l l ) for k^ya

By (A.16)-(A.18) there is c so that

Recalling (A.9)
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Then there is c so that

Hence there is c(2} so that

The region ya < \k\ < yb

For any b > a

where J(k) is the Fourier transform of J(r). Then there is A a - A e(0, 1) and
yUi h so that for all y ^ >'„, h

Recalling (A.9)

Then by (A.28), analogously to (A.30), we have

The region \k\^yb

By Lemma 5.1 in ref. 5 for any multi-index q
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where <3'{ is the gth-dtscrete derivative with respect to y:

et being the unit vector along the y th coordinate direction. Let m an even
integer, a > 0 and

Then for any m there is c so that for all \k\^yb

We then have for a suitable constant c

hence
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